Total Positivity Properties of Generalized Hypergeometric Functions of Matrix Argument
نویسنده
چکیده
In multivariate statistical analysis, several authors have studied the total positivity properties of the generalized (0F1) hypergeometric function of two real symmetric matrix arguments. In this paper, we make use of zonal polynomial expansions to obtain a new proof of a result that these 0F1 functions fail to satisfy certain pairwise total positivity properties; this proof extends both to arbitrary generalized ( rFs) functions of two matrix arguments and to the generalized hypergeometric functions of Hermitian matrix arguments. In the case of the generalized hypergeometric functions of two Hermitian matrix arguments, we prove that these functions satisfy certain modified pairwise TP2 properties; the proofs of these results are based on Sylvester’s formula for compound determinants and the condensation formula of C. L. Dodgson [Lewis Carroll] (1866).
منابع مشابه
Log-Convexity Properties of Schur Functions and Generalized Hypergeometric Functions of Matrix Argument
We establish a positivity property for the difference of products of certain Schur functions, sλ(x), where λ varies over a fundamental Weyl chamber in R n and x belongs to the positive orthant in R. Further, we generalize that result to the difference of certain products of arbitrary numbers of Schur functions. We also derive a log-convexity property of the generalized hypergeometric functions ...
متن کاملLommel Matrix Functions
The main objective of this work is to develop a pair of Lommel matrix functions suggested by the hypergeometric matrix functions and some of their properties are studied. Some properties of the hypergeometric and Bessel matrix functions are obtained.
متن کاملHigh-Dimensional Random Matrices from the Classical Matrix Groups, and Generalized Hypergeometric Functions of Matrix Argument
Results from the theory of the generalized hypergeometric functions of matrix argument, and the related zonal polynomials, are used to develop a new approach to study the asymptotic distributions of linear functions of uniformly distributed random matrices from the classical compact matrix groups. In particular, we provide a new approach for proving the following result of D’Aristotile, Diaconi...
متن کاملIntegral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant
Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.
متن کاملOn some applications of the Dziok-Srivastava operator
Carlson and Shaffer [B.C. Carlson, D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984) 737–745] have introduced a linear operator associated with the Gaussian hypergeometric function which has been generalized by Dziok and Srivastava [J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl....
متن کامل